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Résumé. — Ces notes sont une transcription des notes de mon exposé. L’objectif était de discuter
de la construction de la cohomologie étale.
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Introduction

L’objectif de cet exposé était de présenter la construction d’une théorie cohomologique qui
a joué un rôle crucial dans la preuve des conjectures de Weil. Je souhaitais surtout expliquer
(pour ce que j’en comprends) comment, partant du cadre ≪ topologique ≫ par exemple celui des
variétés algébriques complexes dans lequel on peut introduire des invariants naturels tels que
le groupe fondamental ou les groupes d’homologie simpliciale, on est parvenus à développer des
constructions ≪ analogues ≫ s’adaptant à un cadre nettement plus hostile, celui des variétés sur
des corps finis.

1. Quelques motivations

1.1. Pourquoi ? — On peut se demander pourquoi j’ai eu envie de vous raconter ça. Il est
d’ailleurs important de préciser dès maintenant que je ne suis pas un spécialiste du sujet et je
tiens d’ailleurs à m’excuser si certains éléments qui vont suivre peuvent sembler approximatifs.
Comme je le disais dans l’introduction, j’ai surtout souhaité retranscrire la compréhension que
j’ai pu me développer de ces objets. Je n’aurais pour autant pas la prétention de dire que je les
mâıtrise en profondeur.

Donc, pourquoi vous parler de cohomologie étale ? D’abord parce que étudiant j’étais passionné
par la topologie. Ensuite, en thèse j’ai travaillé sur des codes correcteurs d’erreurs construits à
partir de variétés sur des corps finis. Si la géométrie algébrique sur des corps finis a quelque chose
de passionnant, je conservais cette nostalgie de mes cours de topologie algébrique. Un jour, on m’a
dit ≪ bah sur les corps finis, la cohomologie étale c’est un peu la même chose que la cohomologie
singulière pour les variétés complexes ≫. Ça m’a donné envie d’aller voir cela de plus près.
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Pour les références, j’ai surtout beaucoup appris des notes de cours de Milne [9] que je trouve
formidables. Son livre [8] permet d’aller plus loin.

1.2. Parlons peu mais parlons de moi. — Ma recherche porte sur sur la théorie des codes
d’une part et la cryptographie d’autre part. Dans les mathématiques qui sont derrière, beaucoup
de corps finis et de polynômes en une ou plusieurs variables. Dans ce monde, un problème récurrent
consiste à borner supérieurement ou inférieurement le nombre de solutions à coordonnées dans
un corps Fq d’un système d’équations polynomiales. Géométriquement parlant, borner le nombre
de points à coordonnées dans Fq d’une variété algébrique.

Pour ne pas rester éternellement dans le flou, commençons par donner un exemple, celui de
la distance minimale des codes géométriques. Pour qu’une information puisse être communiquée
via un canal bruité puis récupérée sans perte à l’autre bout de la châıne, on utilise des codes
correcteurs d’erreurs. Un code correcteur d’erreurs est un sous-espace C de dimension k < n de
Fn
q que l’on munit de la métrique de Hamming :

∀x,y ∈ Fn
q , dH(x,y)

def
= ♯{i ∈ {1, . . . , n} | xi ̸= yi}.

On peut vérifier que cette fonction vérifie les propriétés qui définissent une distance (symétrie,
séparation, inégalité triangulaire). Cette métrique est par ailleurs naturelle : un vecteur perturbé,
i.e. dont un ≪ petit≫ nombre de coordonnées auront été modifiées sera proche du vecteur d’origine.
L’idée centrale des codes correcteurs est que pour pouvoir communiquer via un canal bruité, il
faut transmettre une information redondante : un message de k symboles sera encodé en un
message de n symboles via une application d’encodage enc : Fk

q
∼−→ C ⊂ Fn

q . À la sortie, le
processus est efficace si l’on est capable à partir d’un vecteur y′ proche d’un élément y de C de
retrouver y. Cette procédure appelée décodage est pour le moins complexe et je n’en parlerai pas
ici. Je me limiterai à cette remarque : il sera d’autant plus difficile de décoder que les éléments de
C sont proches les uns des autres. Aussi, il est naturel d’introduire la distance minimale de C ,
qui est la plus petite distance de Hamming possible entre deux éléments distincts de C . Du fait
de la discussion qui précède, il est souhaitable que cette quantité soit la plus grande possible. Il
s’avère que le calcul de la distance minimale d’un code est un problème difficile d’un point de vue
algorithmique [1]. Cependant, pour certaines constructions, ce calcul se ramène à un problème
géométrique que l’on sait plus ou moins facilement résoudre.

Une première construction est celle de Reed–Solomon :

C = {(f(x1), . . . , f(xn)) | f ∈ Fq[X], deg f < k}.
Autrement dit, chaque vecteur du code s’obtient comme évaluation multiple d’un même polynôme
en des valeurs distinctes x1, . . . , xn ∈ Fq. Par linéarité, calculer la distance minimale du code
revient à calculer la distance minimale au vecteur nul, ce qui revient à compter le nombre minimal
de coefficients non nuls d’un vecteur, ce qui équivaut à estimer le nombre maximal de coefficients
nuls. Cette dernière quantité est bornée par le nombre de racines du polynôme, lui-même borné
par son degré. On trouve ainsi une borne inférieure pour la distance minimale : d ⩾ n− k + 1.

Si l’on souhaite faire grandir n, les xi devant être distincts (sinon le raisonnement sur la
distance minimale devient faux), on est rapidement bloqués par la taille du corps. La solution
proposée par Goppa au début des années 80 est de remplacer x1, . . . , xn par les points d’une
courbe et d’évaluer des fonctions rationnelles sur cette courbe. Cette construction des codes dits
géométriques généralise la première (les codes de Reed–Solomon pouvant être vus comme des
codes géométriques associés à la droite) et une borne sur la distance minimale de tels codes
s’obtient par des arguments très similaires : une borne supérieure sur le nombre maximal de
zéros d’une fonction non nulle vivant dans un certain espace. Voir par exemple, [10] pour une
introduction accessible aux codes à partir de courbes.

Arrive l’étape suivante : et si on remplaçait ≪ courbe ≫ par une surface ou une variété de
dimension supérieure ? On peut toujours construire notre code par évaluation de fonctions en
des points de cette variété, mais la distance minimale devient bien plus ardue à évaluer. Pour le
comprendre, commençons par prendre la courbe la plus simple possible : la droite et la variété
de dimension supérieure la plus simple possible : le plan. Les fonctions ≪ naturelles ≫ sur la
droite sont les polynômes en une variable et une telle fonction a un nombre fini de racines, même
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sur un corps infini. Si l’on passe au plan, les fonctions naturelles sont les polynômes en deux
variables et ces dernières ont un lieu d’annulation qui, sur un corps algébriquement clos, est
infini. Autrement dit, les zéros d’un polynôme non nul en une variable forment un ensemble fini :
il est de dimension nulle, alors que ceux d’un polynôme en deux variables forment une courbe : un
ensemble algébrique de dimension 1. Ce fait se généralise naturellement aux courbes et variétés de
dimension quelconque. Sur une courbe, le lieu d’annulation d’une fonction est de dimension nulle
et son cardinal peut être borné indépendamment du corps de base. Si par contre on considère une
fonction sur une surface, ses zéros forment une courbe et la question ne va plus être de borner le
nombre zéros (qui sur la clôture algébrique du corps de base est infini) mais de borner le nombre
de points à coordonnées dans Fq de ce lieu des zéros (qui, rappelons le, est une courbe tracée sur
la surface).

Le problème est d’autant plus complexe qu’il ne s’agit pas de le résoudre pour une seule fonction
(et donc pour une seule courbe) mais bien pour toutes les fonctions d’un espace donné. Ce qui
motive à chercher des bornes supérieures sur le nombre de points de courbes appartenant à une
famille et donc à avoir des bornes ne dépendant que de certains invariants associés à la courbe.
Pour plus de détails, je renvoie à [5] qui traite le cas des paramètres de codes sur un espace
projectif et à [6] pour un survey paper sur les codes à partir de variétés de dimension supérieure
à 2.

1.3. Les conjectures de Weil. — On entre alors en plein dans le vif du sujet : comment
compter le nombre de points à coordonnées dans Fq d’une courbe ou d’une variété de dimension
supérieure ?

Étant donnée une variété V sur un corps fini, on la munit de l’endomorphisme de Frobenius
qui envoie un point (x1, . . . , xt) sur (xq1, . . . , x

q
t ). C’est un endomorphisme de V dont les points

fixes sont précisément les points à coordonnées dans Fq. En géométrie complexe, on connait
de longue date la formule dite des traces de Lefschetz qui permet de déterminer le nombre de
points fixes d’un endomorphisme sur une variété en fonction de la manière dont il agit sur ses
groupes de cohomologie singulière. La folle idée de Weil était de reproduire un analogue de
la cohomologie singulière, pourtant fortement liée à la topologie réelle, au cadre des variétés
sur des corps finis. Ça semble particulièrement surprenant car la géométrie algébrique sur les
corps finis semble être un environnement particulièrement hostile à de telles généralisations. La
seule topologie ≪ naturelle ≫ dont on puisse munir les variétés est la topologie de Zariski qui est
particulièrement grossière. Pour des variétés algébriques il n’est pas possible de dire qu’elles sont
≪ localement isomorphes à une boule ≫, on ne peut pas tracer des lacets ou trianguler la variété,
etc, etc. Malgré tous ces obstacles, des mathématiciens sont parvenus à concevoir un cadre formel
similaire à celui que l’on obtient avec des variétés munies d’une topologie réelle ou complexe.
C’est de cela que je vais vous parler par la suite.

2. Le cadre topologique

2.1. Le groupe fondamental. — L’un des objets fondamentaux de la topologie algébrique
est le groupe fondamental. Étant donné un espace topologique ≪ sympathique ≫ (1) dont on se fixe
un point, on regarde tous les lacets partant de ce point et y revenant. On considère ces objets à
déformation continue près et on les munit d’une structure de groupe avec pour loi la concaténation
de lacets. Je renvoie à [4] pour une définition plus rigoureuse.

Par exemple le plan affine réel a un groupe fondamental trivial, tout lacet partant de l’origine
peut être progressivement déformé pour se rétracter sur le point. Considérons maintenant le plan
privé d’un point P fixé, il y a alors deux types de lacets : ceux qui ≪ ne font pas le tour de P ≫ et
ceux qui ≪ le font ≫. Les premiers peuvent se rétracter sur un point alors que les autres ne le
peuvent pas. On peut prouver que ce plan privé d’un point a un groupe fondamental isomorphe
à Z. Via cet isomorphisme la classe d’un lacet est caractérisée par le nombre de fois qu’il fait le

1. Si je reprends le livre de Hatcher [4], il faut que l’espace soit connexe, localement connexe par arcs et semi-
localement simplement connexe.
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tour du point P , le signe étant donné par l’orientation du lacet : fait-il le tour de P dans le sens
trigonométrique ou trigonométrique inverse ?

Fort de cette description on peut se demander ce qu’est le groupe fondamental pour nos objets
topologiques préférés. Un raisonnement similaire à celui effectué pour le plan, permet de montrer
que la sphère S2 a également un groupe fondamental trivial. Le cercle S1 a lui un groupe fonda-
mental isomorphe à Z : là encore, la classe d’un lacet est caractérisée par le nombre de fois que
l’on a fait le tour du cercle dans un sens ou dans l’autre. Si l’on considère la surface d’un tore de
dimension 2 (une bouée) le groupe fondamental est Z2, caractérisant le nombre de tours suivant
des méridiens et le nombre de tours suivant des parallèles. Et puis, si on veut s’amuser un peu on
peut étudier des variétés plus baroques comme le plan projectif réel dont le groupe fondamental
est de torsion ! C’est Z/2Z.

La connaissance du groupe fondamental et ses premières propriétés permet de prouver des
résultats remarquables tels que le théorème du point fixe de Brouwer en dimension 2 [4, Thm. 1.9] :
une application continue du disque dans lui-même admet toujours un point fixe. Ou encore le
théorème de Borsuk Ulam [2, Thm. 20.2] disant que pour toute application continue S2 → R2 il
existe toujours un couple de points antipodaux admettant la même image.

2.2. Les revêtements. — La seconde notion cruciale dans le domaine est celle des revêtements.
Un revêtement entre deux espaces topologiques π : X → Y est la donnée d’une application
continue surjective que l’on peut trivialiser localement. Autrement dit, tout point y de Y admet
un voisinage Vy dont l’image réciproque par π est homéomorphe à la réunion disjointe de copies
de Vy.

L’image réciproque d’un point est une ensemble discret que l’on appelle sa fibre et, s’il est fini,
son cardinal ne dépend pas du point, on l’appelle le degré du revêtement.

Un revêtement X → Y induit un morphisme injectif du groupe fondamental de X dans celui

de Y . Un espace topologique sympathique X admet un revêtement dit universel X̃ → X où

π1(X̃) = 0. L’universalité vient de ce que tout revêtement de X est un revêtement intermédiaire

de X̃ → X. Autrement dit, pour tout revêtement Y → X il existe un revêtement X̃ → Y rendant
le triangle ci-dessous commutatif.

X̃

����
Y // X

Par exemple l’application R → S1 définie par x 7→ eix réalise est un revêtement universel du
cercle.

Plus amusant encore, la théorie des revêtements en topologie algébrique partage de très nom-
breuses analogies avec la théorie de Galois. Étant donné un revêtement Y → X, le groupe π1(Y )
s’identifie à un sous-groupe de π1(X), s’il est distingué, on dit alors que le revêtement est Galoi-
sien. Il y a alors une correspondance entre les sous-groupes de π1(X)/π1(Y ) et les revêtements
intermédiaires de Y → X. Une autre définition des revêtements Galoisiens, équivalente à la
précédente est que le groupe d’automorphisme du revêtement agit librement et transitivement
sur la fibre. En particulier, un revêtement fini, i.e. de degré fini, est Galoisien si et seulement si
son groupe de Galois a un cardinal égal au degré du revêtement.
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Selon cette analogie, le revêtement universel jour le rôle de la clôture algébrique (ou séparable)
et le groupe fondamental celui du groupe de Galois absolu.

2.3. Homologies et cohomolgies. — Introduisons enfin un troisième ingrédient fondamental
en topologie algébrique : les groupes d’homologie, que ce soit l’homologie simpliciale dont la
définition est relativement simple à l’homologie singulière, plus lourde mais adaptée à des espaces
topologiques bien plus généraux.

Je ne vais pas me lancer ici dans des descriptions détaillées, je me contenterai d’une description
informelle. Le groupe fondamental considère des lacets à déformation près. L’homologie va munir
les lacets d’une relation d’équivalence plus large que d’être équivalents à déformation près ; deux
lacets seront équivalents si leur réunion forme ≪ le bord de quelque chose ≫. Par exemple dans
un tore, deux méridiens seront homologues car forment le bord d’une ≪ coquillette ≫. Autrement
dit, dans le dessin ci-dessous, les deux cercles bleus sont équivalents.

D’une manière générale, l’homologie ou la cohomologie permettent de mesurer des obstructions
à rendre globales certaines propriétés locales. Par exemple, sur un tore tout point a un voisinage
qui est un disque, un lacet contenu dans ce voisinage sera le bord d’un disque mais cette propriété
locale ne se globalise pas : certains lacets tracés sur le tore ne sont pas le bord d’un disque et
l’homologie permet de ≪ quantifier ≫ ce défaut.

Enfin, le groupe fondamental π1 n’est pas sans lien avec la cohomologie, un théorème clas-
sique affirme que le premier groupe d’homologie singulière H1(X,Z) d’un espace topologique est
isomorphe à l’abélianisé de π1(X).

L’homologie singulière permet la démonstration de résultats puissants tels que le théorème
d’invariance du domaine [2, Cor. 19.8] (si un ouvert U de Rn est homéomorphe à un ouvert
V de Rm, alors n = m), ou encore le théorème du point fixe de Brouwer [2, Cor 11.12] (toute
application continue de la boule unité de Rn dans elle même admet un point fixe).

Enfin, l’homologie et la cohomologie singulière sont des constructions fonctorielles : à un espace
topologique on associe une collection de groupes (ou de modules) et une application continue entre
deux espaces topologiques induit des applications linéaires entre ces modules. Une des utilisations
phare de ces applications linéaires est la formule des traces de Lefschetz.

Theorème 2.1 (Formule des traces de Lefschetz). — Soit f : X → X une application
continue d’une variété complexe compacte de dimension d dans elle même, et soit Nf le nombre
de points fixes de f comptés avec multiplicité. Alors :

Nf =

2d∑
i=0

(−1)iTr(f∗i )

où pour tout i, f∗i : Hi(X,Q) → Hi(X,Q) est l’application linéaire induite par f sur le i-ème
groupe d’homologie.

Dans ses travaux, Weil observe un comportement spécifique du nombre de points à coordonnées
dans Fq d’une variété sur un corps fini : il semble provenir d’une formule similaire à la formule des
traces de Lefschetz. Il reste ≪ seulement ≫ à construire cette théorie cohomologique. Le contexte
impose certaines contraintes. En particulier le corps de définition doit être de caractéristique nulle :
on veut le nombre de points et pas seulement le nombre de points modulo la caractéristique. Les
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traces dont on va calculer la somme alternée doivent donc vivre dans un corps de caractéristique
nulle.

De plus, un exemple dû à Serre considérant certaines courbes elliptiques sur les corps finis, dites
supersingulières ajoute une nouvelle contrainte : le corps de définition ne peut pas être Q,R ou le
corps des nombres p-adiques Qp où p désigne la caractéristique du corps de définition de la variété
algébrique (dont on veut compter les points). Par contre le corps Qℓ des nombres ℓ–adiques pour
ℓ premier à p reste un candidat possible.

3. Un peu de géométrie algébrique

La tentation est forte : existe-t-il un moyen d’étendre la formule de Lefschetz aux variétés sur
un corps finis en prenant pour f le Frobenius ? Cela fournirait une manière de compter les points
à coordonnées dans Fq d’une variété sur ce corps.

Le souci est que dans un monde ≪ continu ≫ on peut tracer des chemins sur une variété. Munie
de la topologie usuelle, tout point lisse d’une variété a un voisinage difféomorphe à une boule
et enfin, comme on l’a précédemment signalé les revêtements se trivialisent localement. Si on
travaille maintenant sur un corps quelconque et (allons-y !) de caractéristique positive, les outils
issus de l’analyse et de la topologie usuelle ne sont plus utilisables. On est cantonnés à des outils
purement algébriques que je passe rapidement en revue dans ce qui suit.

3.1. Variétés, fonctions. — Je ne vais pas ici faire un cours détaillé de géométrie algébrique,
simplement dire que son but est d’étudier de manière géométrique le lieu d’annulation d’un en-
semble de polynômes. Plus important encore que l’objet géométrique lui-même, il y a les fonctions
que l’on définit dessus. En géométrie algébrique, les fonctions ≪ autorisées ≫ sont les polynômes
et/ou les fractions rationnelles : les fonctions algébriques. Le fameux théorème des zéros de Hil-
bert (Nullstellensatz ) établit une correspondance entre sous-ensembles algébriques d’un ensemble
algébrique et idéaux de l’anneau des fonctions définies sur la variété. On munit alors naturelle-
ment une variété d’une topologie, la topologie de Zariski : les fermés sont les lieux d’annulation
d’un polynôme.

Cette topologie est particulièrement grossière. Par exemple les fermés d’une courbe sont ; la
courbe elle-même et ses sous-ensembles finis. En particulier les espaces topologiques ainsi obtenus
ne sont pas séparés (2). Pire que ça : tout ouvert est dense.

3.2. Études locales. — Comme en géométrie différentielle, on sait étudier une fonction ou une
variété au voisinage d’un point donné. On dispose en particulier en chaque point d’une variété,
d’un anneau local des fonctions algébriques définies au voisinage de ce point : l’ensemble des
fractions rationnelles dont le dénominateur ne s’annule pas en ce point. Ces anneaux locaux
sont fort pratiques mais restent en un sens décevants : étant donnés deux points non singu-
liers d’une variété algébrique, les anneaux locaux ne sont en général pas isomorphes. Même en
considérant les anneaux locaux, on ne parvient donc pas à retrouver cette description plaisante
des variétés topologiques comme un ensemble pour lequel les voisinages de deux points distincts
sont homéomorphes. Une remarque toutefois qui prendra son sens plus tard : si les anneaux locaux
au voisinage de 2 points distincts ne sont pas isomorphes, leurs complétés (3) le sont.

Puisqu’on parlait de revêtements dans la section précédente, on peut définir des morphismes
de variétés algébriques. Certains, comme les revêtements, vérifient la propriété qu’une fibre a
toujours le même cardinal. On parle alors de revêtement non ramifié ou revêtement étale. (4)

2. En géométrie algébrique, une notion de séparation existe mais elle est plus faible que la définition usuelle en
topologie

3. Je renvoie à [3, Chap. 7] pour la notion de complétion d’anneau local.
4. La terminologie n’est pas complètement cohérente entre topologie algébrique et géométrie algébrique. En

topologie, un revêtement ramifié est une application continue qui devient un revêtement si l’on supprime certains
points. Ensuite, toujours en topologie, quand on parle de revêtement (tout court) il est non ramifié. En géométrie
algébrique, lorsque l’on parle de revêtement, il est possiblement ramifié et, s’il ne l’est pas, on le précise en parlant
de revêtement non ramifié ou étale.
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On peut associer aux revêtements un groupe d’automorphismes et certains morphismes
s’avèrent être des revêtements Galoisiens : le groupe d’automorphismes agit librement tran-
sitivement sur toute fibre. Un théorème de correspondance de Galois existe et établit une
correspondance entre sous-groupes du groupe d’automorphismes d’un morphisme et revêtements
intermédiaires. Par ailleurs on dispose d’un foncteur contravariant entre variétés et corps de
fonctions algébriques (i.e. extensions finies du corps de fonctions rationnelles k(x1, . . . , xn)) et
via ce foncteur, le théorème de correspondance de Galois pour les morphismes entre variétés
correspond au théorème de correspondance de Galois bien connu pour les extensions de corps.

Mais pour autant, le caractère trop grossier de la topologie de Zariski ne permet pas de trivia-
liser localement un revêtement entre variétés : il n’y a pas assez d’ouverts et ils sont bien ≪ trop
gros ≫.

3.3. Faisceaux. — Bon... faut bien que j’en parle à un moment, une des premières marches un
peu pénible à franchir en géométrie algébrique, ce sont les faisceaux. Conceptuellement, ce n’est
pas si lourd : au lycée quand vous parliez de fonction, votre prof commençait par vous dire ≪ quel
est le domaine de définition ? ≫. Un faisceau sur un espace topologique X, c’est une collection de
couples (U, f) où U est un ouvert de X, f est une fonction définie sur U , à laquelle on rajoute
deux propriétés :

— Une stabilité par restriction : si V est contenu dans U alors la je peux définir une restriction
f|V de f à V et le couple (V, f|V ) fait partie du faisceau ;

— Une stabilité par ≪ recollement ≫, si (U, f) et (U ′, g) sont cöıncident U ∩U ′ (autrement dit
les restrictions sont égales) alors il existe un unique ≪ recollement ≫ défini sur U ∪ U ′.

Plus formellement, l’ensemble des ouverts de X ordonnés par inclusion forme une catégorie dont
les flèches sont données par les inclusions. Un faisceau d’ensembles est un foncteur contravariant
de cette catégorie des ouverts vers la catégorie des ensembles vérifiant une certaine propriété de
recollement. En résumé : à un ouvert U , on associe un ensemble F (U) de fonctions sur cet ouvert,
la fonctorialité n’est autre que la stabilité par restriction. Ensuite, il faut ajouter une propriété
de recollement. Pour finir, on peut spécifier la catégorie d’arrivée pour avoir des faisceaux en
groupes, en anneaux, etc.

Remarque 3.1. — Assumant un style très discursif et parfois obscur (je m’adapte à l’envi-
ronnement sous-terrain), je vais parfois loin dans le manque de rigueur. Sur les faisceaux, la
définition rigoureuse ne demande pas que f soit une fonction sur U , c’est un objet d’une certaine
catégorie. Cependant, un théorème que je ne détaille pas affirme que tout faisceau est isomorphe
à un faisceau de fonctions à valeurs dans un ensemble ad hoc appelé espace étalé du faisceau.

Des faisceaux vous en connaissez plein. Sur la droite réelle, il y a le faisceau des fonctions
continues, des fonctions C∞. Sur C, il y a le faisceau des fonctions holomorphes, etc. etc.

Un aspect sympathique des faisceaux est qu’ils s’accompagnent d’une cohomologie du même
nom : la cohomologie des faisceaux. Suivant le bon vieux principe de ≪ pourquoi faire simple quand
on peut faire compliqué ≫, la cohomologie simpliciale, relativement simple à définir peut quand
même se voir comme la cohomologie d’un faisceau constant : autrement dit la cohomologie d’un
faisceau de fonctions localement constantes à valeurs entières. Mais cette dernière observation
nécessite une fois de plus que l’on munisse l’objet d’étude d’une topologie de variété topologique
réelle et donc que l’on dispose de ≪ beaucoup d’ouverts ≫. Appliqué à la topologie de Zariski, on
fait de nouveau face à un échec cuisant : appliqué à une variété algébrique connexe munie de la
topologie de Zariski, le faisceau constant Z, autrement dit le faisceau des fonctions localement
constantes (donc constantes parce que tout ouvert est dense) à valeurs entières donne un H0 de
dimension 1 (une seule composante connexe) et des Hi nuls pour tout i > 0.

4. Topologie et cohomologie étale

4.1. On veut faire quoi déjà ? — Si on fait le bilan de la discussion précédente, on veut
trouver une cohomologie dans l’esprit de la cohomologie singulière/simpliciale que l’on puisse
décrire de manière purement algébrique. On semble bloqué à plusieurs endroits :
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— On ne peut pas trivialiser localement une variété, autrement dit on ne peut pas dire que
dans une variété, deux points lisses ont des voisinages homéomorphes ;

— On peut définir des revêtements et une théorie de Galois de ces derniers, mais on ne peut
pas les trivialiser localement ;

— Les faisceaux constants ont une cohomologie sans intérêt.
Et ces constats reposent sur un même problème : la topologie de Zariski, pourtant naturelle en
géométrie algébrique, n’est pas adaptée parce que beaucoup trop grossière.

4.2. Eurêka. — L’idée clé et absolument géniale introduite par Grothendieck est de dire que
le problème n’est pas dans ≪ Zariski ≫ mais dans ≪ topologie ≫. Il propose alors de relaxer la
définition de topologie en supprimant une propriété (pourtant assez intuitive) : dans une topologie
de Grothendieck sur une variété algébrique, un ouvert n’a pas besoin d’être un sous-ensemble de
cette variété...

Si on reprend la définition d’une topologie, c’est un ensemble de parties d’un ensemble X
incluant la partie vide ∅, la partie pleine X et stable par unions quelconques et par intersec-
tions finies. Comme je l’avais mentionné précédemment, une topologie a une structure naturelle
de catégorie, les morphismes étant donnés par les relations d’inclusion. Une topologie de Gro-
thendieck, se définit ainsi comme une catégorie d’≪ ouverts ≫ munies des quelques propriétés
strictement nécessaires pour pouvoir y étendre la notion de faisceau. À savoir :

— il faut généraliser la notion d’intersection qui sera remplacée par le fait que la catégorie soit
stable par produit fibré. Je reviens sur ce point un peu après.

— il faut généraliser la notion de recouvrement par des ouverts (pas besoin de généraliser
exactement la stabilité par union quelconque : la cible c’est de pouvoir définir des faisceaux
dans ce contexte), ce qui est fait par une propriété adéquate.

Un faisceau, devient alors un foncteur de la topologie de Grothendieck (qui est une catégorie) à
valeurs dans une autre catégorie (celle des groupes abéliens par exemple) vérifiant une propriété
de recollement impliquant les recouvrements d’ouverts apparaissant dans la définition de topologie
de Grothendieck.

Pourquoi le produit fibré ? — Dans une catégorie si on se donne trois objets X,Y, Z et des flèches
f : x → Z et g : Y → Z, le produit fibré X ×Z Y est (s’il existe), un objet vérifiant la propriété
universelle suivante : tout diagramme commutatif comme celui de gauche dans la figure se factorise
de manière unique en le diagramme commutatif de droite :

T

��

""

Y

g

��
X

f
// Z

T

""

%%

∃!

##
X ×Z Y //

��

Y

g

��
X

f
// Z

Si par exemple on est dans la catégorie des ensembles le produit fibré existe et a une description
explicite simple :

X ×Z Y
def
= {(x, y) ∈ X × Y | f(x) = g(y)}.

Si maintenant, X,Y sont inclus dans Z et que les applications f, g sont les injections canoniques,
on déduit alors que le produit fibré n’est autre que l’intersection X ∩ Y . Aussi, la propriété de
stabilité par produits fibrés dans les catégories de Grothendieck est une généralisation naturelle
de la propriété de stabilité par intersections finies des topologies au sens classique.

4.3. Les ouverts, c’est comme la confiture, moins on en a, plus on l’étale. — Reste
l’épineuse question de ≪ quelle topologie de Grothendieck ≫ ? La topologie étale consiste en les
ouverts de Zariski mais également leurs revêtements étales. Si par exemple on considère la droite

affine A1 et l’ouvert de Zariski U def
= A1 \ {0} est un ouvert pour la topologie étale. Mais le
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revêtement non ramifié {
U 7−→ U
z −→ z2.

en est un autre. Voici un autre exemple, toujours d’ouvert étale de A1. On considère la courbe
affine E plane d’équation y2 = x(x + 1)(x − 1) et P,Q,R les points de coordonnées respectives
(−1, 0), (0, 0), (1, 0). Alors, le revêtement{

E \ {P,Q,R} 7−→ A1 \ {−1, 0, 1}
(x, y) −→ x.

est un revêtement non ramifié de A1 \ {−1, 0, 1}, et donc un ouvert étale de A1 !

4.4. Et ça apporte quoi ? — Ben, ça résout plein de problèmes ! On n’arrivera toujours pas
à dire que deux points d’une variété ont des voisinages ouverts isomorphes mais au moins les
anneaux locaux deviennent isomorphes. En effet, l’anneau local pour la topologie étale correspond
à la partie algébrique du complété de l’anneau local pour la topologie de Zariski et comme je l’avais
mentionné avant cela, si les anneaux locaux pour la topologie de Zariski ne sont pas isomorphes,
leurs complétés le sont.

Ensuite, il y a suffisamment d’ouverts pour trivialiser des revêtements non ramifiés et la trivia-
lisation locale d’un revêtement se fait presque... par construction. Si on se donne une variété X et
un revêtement non ramifié Y → X. Alors ce revêtement est aussi... un ouvert pour la topologie
étale, on peut donc restreindre le revêtement à cet ouvert ! Revenons au cas d’un revêtement
topologique classique p : Y → X. On se donne un point de X, la trivialisation locale consiste
à dire qu’il existe un voisinage ouvert U de X tel que p−1(U) est homéomorphe à une réunion
disjointe de copies de U . Cela peut se reformuler en disant que le produit fibré U ×X Y (pour
l’injection canonique U ↪→ X et p : Y → X) est homéomorphe à une union disjointes de copies
de U .

Si l’on revient maintenant à un revêtement étale Y → X, alors, dans les diagrammes ci-dessous,
en regardant Y → X à la verticale comme un revêtement et à l’horizontale comme un ouvert pour
notre topologie (de Grothendieck) étale, on peut prouver que le produit fibré Y ×XY nous donne...
une réunion disjointe de copies de Y ! Autrement dit, le revêtement se trivialise au voisinage de
chaque point en considérant le même voisinage pour chaque point qui ne sera rien d’autre que le
revêtement lui même.

Y ×X Y Y

Y X

Fort de ce constat, on revient au groupe fondamental. Sa définition classique repose sur le
tracé et la déformation de lacets sur un espace topologique. Mais la théorie des revêtements le
faisait aussi apparâıtre comme une sorte de groupe de Galois. Un groupe qui permet de classifier
les revêtements d’un espace topologique donné. Ce point de vue s’étend bien plus facilement au
cadre algébrique. On définit ainsi le groupe fondamental d’une variété comme la limite projec-
tive des groupes d’automorphismes de tous ses revêtements étales Galoisiens. Autrement dit, un
gros groupe dont les quotients finis sont les groupes de Galois de revêtements étales finis. Pour
une variété complexe, le groupe ainsi obtenu est le complété, pour une certaine topologie, du
groupe fondamental ≪ classique ≫ défini dans le cas topologique. Pour finir, même s’il faut sor-
tir de la catégorie des ouverts de Zariski et aller chercher des ouverts étales pour trivialiser un
revêtement, notre définition du π1(X) conserve une propriété vérifiée dans le cadre topologique :
il agit transitivement sur la fibre de tout revêtement de X.
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4.5. L’apothéose. — Enfin, la cohomologie des faisceaux constants qui était triviale pour la
topologie de Zariski devient non triviale et fournit un outil d’une grande richesse qui mènera à la
preuve des conjectures de Weil. Si on considère une variété X sur un corps fini munie du faisceau
constant µℓ (c’est-à-dire, le faisceau des fonctions localement constantes à valeurs dans le groupe
des racines ℓ-ièmes de l’unité) où ℓ est premier à la caractéristique, on peut considérer la suite
exacte de Kummer :

0 // µℓ
// O×

f 7→fℓ

// O× // 0,

où O× décrit le faisceau des fonctions algébriques (autrement dit les polynômes et les fractions
rationnelles) sur X sans zéros ni pôle sur leur ouvert de définition. Ces faisceaux peuvent être
définis pour la topologie de Zariski mais cette suite ne serait pas exacte à droite : en effet l’appli-
cation f 7→ f ℓ définit un morphisme de faisceaux mais celui-ci n’est pas surjectif : si on travaille
par exemple sur un ouvert de la droite affine A1, une fraction rationnelle f ne peut pas s’écrire
comme une puissance ℓ-ième, même si on se restreint à un sous-ouvert. Dans le cadre étale, cela
devient possible en considérant un revêtement étale d’un ouvert de la droite du type Y → A1

où Y serait un ouvert de la courbe d’équation T ℓ − f(X) = 0. Sur Y la fonction f devient une
puissance ℓ-ième. La topologie étale permet donc de rendre exactes des suites de faisceaux qui ne
le seraient pas avec la seule topologie de Zariski.

La suite exacte de Kummer permet de déduire le H1
ét(X,µℓ) de la connaissance de H1

ét(X,O×).
On prouve que ce dernier n’est autre que le groupe de Picard de la courbe (un analogue
géométrique du groupe de classes en théorie des nombres). En transpirant un peu, on en
déduit que ce H1

ét(X,µℓ) est isomorphe à la ℓ–torsion du groupe de Picard de X et classifie
les revêtements étales Galoisiens de degré ℓ de la variété. Plus formellement, H1

ét(X,µℓ) est
isomorphe à Hom(π1(X),Z/ℓZ) une relation proche de celle obtenue dans le cadre topologique
(le H1 égal à l’abélianisé du π1) ! Si de plus X est une courbe de genre g, on prouve que ce H1

ét

est de dimension 2g, ce qui est également la dimension des H1 de la cohomologie singulière ou
simpliciale d’une courbe complexe. On tient le bon bout ! Le groupe de cohomologie H1

ét(X,Qℓ)
se déduit des groupes de type H1

ét(X,Z/ℓnZ) par la construction :

H1
ét(X,Qℓ) =

(
lim
←−

H1
ét(X,Z/ℓnZ)

)
⊗Zℓ

Qℓ.

Deligne a prouvé que cette construction répondait à toutes les attentes les plus folles énoncées
par Weil. Autrement dit, c’est une cohomologie de Weil, en particulier elle fournit une formule
des traces de Lefschetz et l’endomorphisme de Frobenius sur X induit des endomorphismes sur
les groupes de cohomologie auxquels on peut appliquer cette formule des traces et déduire une
formule sur le nombre de points rationnels de X. En définitive, la construction de la cohomologie
étale fournit exactement l’outil dont on rêvait.

5. Retours à nos moutons

Découvrir cette théorie m’a enchanté, même si je n’aurais pas la prétention de dire que j’en
connais les moindres détails. La cohomologie étale a permis de résoudre une conjecture majeure
en géométrie arithmétique pour autant elle ne m’a pas aidé à remplir mes objectifs initiaux :
l’utiliser pour résoudre des problèmes relatifs aux codes correcteurs d’erreurs. Dès que l’on ne
travaille plus sur une courbe les groupes de cohomologie et l’action du Frobenius sur ces derniers
devient très difficile à calculer en pratique. D’ailleurs, cela ne fait qu’une dizaine d’années que l’on
sait que ces objets sont calculables (au sens de Church–Turing) [7]. Pour les courbes, la borne de
Weil sur le nombre de points

|♯X(Fq)− (q + 1)| ⩽ 2g
√
q

peut se déduire de la preuve des conjectures de Weil.... mais elle peut s’obtenir via des construc-
tions plus simples. Par ailleurs, cette borne s’avère être précise pour de grandes valeurs de q alors
que la théorie des codes est friande de constructions sur de petits corps finis. Et sur de petits
corps, les méthodes de comptage reposant sur de la combinatoire et de la géométrie finie sont
parfois plus efficaces que les formules utilisant la cohomologie étale. Bref, je ne suis pas parvenu
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à l’utiliser à bon escient pour obtenir des propriétés de codes. Mais ce n’est que partie remise et
cela n’enlève rien à la beauté de la construction.

Bon... il est temps de remonter à la surface (qui n’est même pas algébrique).
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